47 research outputs found

    Ex vivo modelling of drug efficacy in a rare metastatic urachal carcinoma

    Get PDF
    Background Ex vivo drug screening refers to the out-of-body assessment of drug efficacy in patient derived vital tumor cells. The purpose of these methods is to enable functional testing of patient specific efficacy of anti-cancer therapeutics and personalized treatment strategies. Such approaches could prove powerful especially in context of rare cancers for which demonstration of novel therapies is difficult due to the low numbers of patients. Here, we report comparison of different ex vivo drug screening methods in a metastatic urachal adenocarcinoma, a rare and aggressive non-urothelial bladder malignancy that arises from the remnant embryologic urachus in adults. Methods To compare the feasibility and results obtained with alternative ex vivo drug screening techniques, we used three different approaches; enzymatic cell viability assay of 2D cell cultures and image-based cytometry of 2D and 3D cell cultures in parallel. Vital tumor cells isolated from a biopsy obtained in context of a surgical debulking procedure were used for screening of 1160 drugs with the aim to evaluate patterns of efficacy in the urachal cancer cells. Results Dose response data from the enzymatic cell viability assay and the image-based assay of 2D cell cultures showed the best consistency. With 3D cell culture conditions, the proliferation rate of the tumor cells was slower and potency of several drugs was reduced even following growth rate normalization of the responses. MEK, mTOR, and MET inhibitors were identified as the most cytotoxic targeted drugs. Secondary validation analyses confirmed the efficacy of these drugs also with the new human urachal adenocarcinoma cell line (MISB18) established from the patient’s tumor. Conclusions All the tested ex vivo drug screening methods captured the patient’s tumor cells’ sensitivity to drugs that could be associated with the oncogenic KRASG12V mutation found in the patient’s tumor cells. Specific drug classes however resulted in differential dose response profiles dependent on the used cell culture method indicating that the choice of assay could bias results from ex vivo drug screening assays for selected drug classes

    Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops

    No full text
    Aims: The roles of the diverse populations of micro-organisms responsible for biodegradation of organic matter to form methane and carbon dioxide are rudimentarily understood. To expand the knowledge on links between microbial communities and the rate limiting, hydrolytic stage of two-stage biogas production from energy crops, this study was performed. Methods and Results: The process performance. and microbial communities (as determined by fluorescence in situ hybridization) in two separate two-stage batch digestions of sugar beets and grass/clover were studied. The microbial populations developed in the hydrolytic stage of anaerobic digestion of beets and grass/clover showed very few similarities, despite that the hydrolysis dynamics were similar. In both substrates, the solubilization of organic material was rapid for the first 10 days and accompanied by a build-up of volatile fatty acids (VFAs) and lactate. Between days 10 and 15, VFA and lactate concentrations decreased, as did the solubilization rates. For both substrates, Archaea started to appear in the hydrolytic stage between days 10 and 15, and the fraction of Bacteria decreased. The major bacterial group detected in the leachate fraction for beets was Alphaproteobacteria, whereas for grass/clover it was Firmicutes. The number of cells that bound to probes specifically targeting bacteria with cellulolytic activity was higher in the digestion of grass than in the digestion of beet. Conclusions: This study allowed the identification of the general bacterial groups involved, and the identification of a clear shift in the microbial population when hydrolysis rate became limiting for each of the substrates investigated. Significance and Impact of the Study: The findings from this study could be considered as a first step towards the development of strategies to stimulate hydrolysis further and ultimately increasing the methane production rates and yields from reactor-based digestion of these substrates
    corecore